CHAPITRE 2

Entropie et deuxieme principe

2.1 Entropie comme fonction d’état

Yoh?kr  Déterminer quelles fonctions suivantes peuvent représenter 1’entropie
d’un systeme de température positive. Dans ces expressions, Ey et V| sont des
constantes représentant une énergie par mole et un volume, respectivement.
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)(2 Travail dépendant du processus

Yoro®kw  Trois processus sont effectués sur un gaz d’un état initial (p1, V1) a
un état final (po, Va) :

1) un processus isochore (volume constant) suivi d’un processus isobare (pres-
sion constante),

2) un processus isobare suivi d’un processus isochore,

3) un processus ou p V' est constant.

Pour ces trois processus, déterminer le travail effectué sur le gaz de 1’état initial

a ’état final. Ces processus sont supposés réversibles. Déterminer les expres-

sions analytiques des travaux d’abord puis donner ensuite leurs valeurs numé-
riques en joules.
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Application numérique

pr=po=1bar, Vi =3Vy, po=3pget Vo =1y =1L

2.3 Pompe a vélo

LYok ®  De lair est comprimé dans la chambre 4 air d’un pneu de vélo & ’aide
d’une pompe a vélo. La poignée de la pompe est descendue d’une position
initiale x5 & une position finale x; ol 1 < x2 et la norme de la force est
supposée étre donnée par,

ro — X
F(.’L‘) = Fmax 2
To — X1

Le processus est supposé étre réversible et le cylindre de la pompe a une section

de surface A. Déterminer en termes de la pression atmosphérique p°**t,

1) le travail W), effectué par la main sur la poignée de la pompe,
2) la pression p (),

3) le travail Wiy effectué sur le systéme d’apres la relation (7).

Application numérique

Froax =10N, 27 =20 cm, 25 = 40 cm, A = 20 cm? et p* = 10° Pa.

X4 Se frotter les mains

YORH  Se frotter les mains est un processus dissipatif qu’on désire modéliser
et quantifier. On considere les mains comme des solides indéformables et on
suppose qu’il n’y a pas de transfert de chaleur entre les mains et ’environne-
ment.

1) Déterminer la puissance extérieure P <t dissipée par le frottement durant
ce processus en termes de la force de frottement F ot de la vitesse v,
supposée constante, d’'une main par rapport a l'autre.

2) A température ambiante T, déterminer le taux de production d’entropie
IIg de ce processus.

Application numérique

[FT| =1N, |v|| = 0.1m/s et T = 25°C
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2){ Echauffement par brassage

Yerofokr Dans une expérience analogue & celle de Joule, on utilise un moteur
électrique au lieu d’un poids de masse M pour brasser le liquide. On considere
que la puissance thermique Pg due au frottement visqueux est connue. De plus,
on suppose que ’énergie interne U est une fonction de la température T telle
que U = M cp; T, ou le coefficient cjps, qui représente la chaleur spécifique par
unité de masse et de température, est connu et indépendant de la température.

1) Déduire laccroissement de température AT di au brassage qui a lieu du-
rant un intervalle de temps At.

2) Déterminer l'expression de la variation d’entropie AS durant ce processus
dont la température initiale est Tj.

Application numérique

M=200g, Po=19W, cpy =3 J g K™, At =120 s et Ty = 300 K.

2.6 Variation d’entropie dans I’eau

Yok ®  De leau est chauffée par un petit chauffage électrique et la tempéra-
ture de I'eau est mesurée. Le chauffage fournit de la chaleur au systeme a 1’aide
d’une puissance thermique Fg. Le récipient est un calorimetre dont on peut né-
gliger ’absorption de chaleur. Avant d’enclencher le chauffage, la température
de l'eau est Ty et son entropie est Sy. Une évolution linéaire de la température
donnée par T (t) = Tp + A t est observée. Déduire la variation d’entropie AS
durant ce processus, qu'on supposera réversible.

2 Horloge suisse

Yo% Une entreprise horlogere suisses mentionne dans son catalogue la
puissance mécanique Py, dissipée par une de ses horloges (fig. 7?). Le travail
effectué sur ’horloge est di a des fluctuations de température AT autour de la
température ambiante moyenne 7. Il permet a I’horloge de fonctionner durant
un intervalle de temps At. On considére que la pression atmosphérique p®** est
égale A la pression du gaz p, i.e. p* = p. La pression p et le volume V du gaz
sont liés par la loi des gaz parfait pV = NRT ou R est la constante des gaz
parfait. En considérant que le gaz a l'intérieur la capsule est toujours a 1’équi-
libre avec l'air & 'extérieur de la capsule (pression et température intérieures
et extérieures égales). D’apres les données de lentreprise horlogere, estimer le
volume V de la capsule de gaz utilisée pour faire fonctionner cette horloge.

Application numérique

Py =0.25-108W, T = 25°C, AT = 1°C, p®* = 10° Pa et At = 1jour.
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Fig. 2.1 Un horloge regoit de 1’énergie d’une capsule de gaz (zone grise). Le gaz se détend
et se comprime sous ’effet des fluctuations de la température ambiante.

2@ Détentes réversible et irréversible d’un gaz

Yo% Une mole de gaz subit une détente au moyen de deux processus
différents. Le gaz satisfait ’équation d’état pV = NRT ou R est une constante,
N est le nombre de moles, p la pression, T la température et V' le volume du
gaz. Les températures initiales et finales sont Tj. Les parois du récipient sont
diathermes. Toutefois, si un processus a lieu extrémement rapidement, les parois
peuvent étre considérées comme adiabatiques. La pression initiale du gaz est
p1, la pression finale est py. Exprimer le travail effectué sur le gaz en termes de
p1, p2 et Ty pour les processus suivants :

1) un processus isotherme réversible,

2) une variation de volume extrémement rapide durant laquelle la pression
exercée sur le gaz vaut po, suivie par un processus isochore durant lequel
la température atteint a nouveau la température d’équilibre Tj.

2.9 Processus adiabatique réversible sur un gaz

Yerofokr Un gaz parfait & pression p et volume V est tel que son énergie interne
est donnée par U = cpV, ou ¢ est une constante sans dimension. Déterminer le
pression p (V) pour une compression ou une expansion adiabatique réversible.

2.10 Compression thermique d’un ressort

Yrrok On consideére un piston de masse négligeable coulissant sans frotte-
ment dans un cylindre d’aire A et attaché & un ressort dont la constante de
rappel est k (fig. 7?). Lorsque le cylindre est vide, le piston se trouve en position
Zo. On le remplit d’'un gaz parfait qui satisfait la loi pV = NRT. L’énergie
interne du gaz est donnée par U = ¢ NRT ou ¢ > 0 est une constante et R > 0
également. Apres remplissage, il se trouve alors & I’équilibre en position initiale
x;. On chauffe le cylindre et on constate qu’il se trouve alors a 1’équilibre en
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position finale z . On suppose que ce processus est réversible et que le systeme
se trouve dans une enceinte a vide, c’est-a-dire que la pression dans ’enceinte
est nulle. La masse du piston n’est pas prise en considération ici.
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Fig. 2.2 Un piston enfermant un gaz passe de la position z; & la position z, lorsque le
gaz contenu dans le cylindre est chauffé. Le piston est retenu par un ressort de constante
élastique k. La position au repos du ressort est en zq.

1) Déterminer le volume V,, la pression p, et la température 7, du gaz en
position d’équilibre a en termes des parametres k, A, zqg et z,.

2) Montrer que la dérivée de la pression p par rapport au volume V est de la

forme,
dp  k
av -~ A?
3) Déterminer le travail — W,y effectué par le gaz sur le ressort lorsque le
piston se déplace de x; a x; en termes des parametres k, x; et ;.

4) Déterminer la variation d’énergie interne AU,y du gaz lorsque le piston se
déplace de x; & x5 en termes des parametres k, ¢, xg, x; et xy.





