
Chapitre 2

Entropie et deuxième principe

2.1 Entropie comme fonction d’état

Déterminer quelles fonctions suivantes peuvent représenter l’entropie 
d’un système de température positive. Dans ces expressions, E0 et V0 sont des 
constantes représentant une énergie par mole et un volume, respectivement.
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2.2 Travail dépendant du processus

Trois processus sont effectués sur un gaz d’un état initial (p1, V1) à
un état final (p2, V2) :

1) un processus isochore (volume constant) suivi d’un processus isobare (pres-
sion constante),

2) un processus isobare suivi d’un processus isochore,

3) un processus où p V est constant.

Pour ces trois processus, déterminer le travail effectué sur le gaz de l’état initial
à l’état final. Ces processus sont supposés réversibles. Déterminer les expres-
sions analytiques des travaux d’abord puis donner ensuite leurs valeurs numé-
riques en joules.
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Application numérique

p1 = p0 = 1 bar, V1 = 3V0, p2 = 3 p0 et V2 = V0 = 1 l.

2.3 Pompe à vélo

De l’air est comprimé dans la chambre à air d’un pneu de vélo à l’aide
d’une pompe à vélo. La poignée de la pompe est descendue d’une position
initiale x2 à une position finale x1 où x1 < x2 et la norme de la force est
supposée être donnée par,

F (x) = Fmax
x2 − x

x2 − x1

Le processus est supposé être réversible et le cylindre de la pompe a une section
de surface A. Déterminer en termes de la pression atmosphérique p ext,

1) le travail Wp effectué par la main sur la poignée de la pompe,

2) la pression p (x),

3) le travail W12 effectué sur le système d’après la relation (??).

Application numérique

Fmax = 10 N, x1 = 20 cm, x2 = 40 cm, A = 20 cm2 et p ext = 105 Pa.

2.4 Se frotter les mains

Se frotter les mains est un processus dissipatif qu’on désire modéliser
et quantifier. On considère les mains comme des solides indéformables et on
suppose qu’il n’y a pas de transfert de chaleur entre les mains et l’environne-
ment.

1) Déterminer la puissance extérieure P ext dissipée par le frottement durant
ce processus en termes de la force de frottement F fr et de la vitesse v,
supposée constante, d’une main par rapport à l’autre.

2) A température ambiante T , déterminer le taux de production d’entropie
ΠS de ce processus.

Application numérique

‖F fr‖ = 1 N, ‖v‖ = 0.1 m/s et T = 25◦C
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2.5 Echauffement par brassage

Dans une expérience analogue à celle de Joule, on utilise un moteur
électrique au lieu d’un poids de masse M pour brasser le liquide. On considère
que la puissance thermique PQ due au frottement visqueux est connue. De plus,
on suppose que l’énergie interne U est une fonction de la température T telle
que U = M cM T , où le coefficient cM , qui représente la chaleur spécifique par
unité de masse et de température, est connu et indépendant de la température.

1) Déduire l’accroissement de température ∆T dû au brassage qui a lieu du-
rant un intervalle de temps ∆t.

2) Déterminer l’expression de la variation d’entropie ∆S durant ce processus
dont la température initiale est T0.

Application numérique

M = 200 g, PQ = 19 W, cM = 3 J g−1K−1, ∆t = 120 s et T0 = 300 K.

2.6 Variation d’entropie dans l’eau

De l’eau est chauffée par un petit chauffage électrique et la tempéra-
ture de l’eau est mesurée. Le chauffage fournit de la chaleur au système à l’aide 
d’une puissance thermique PQ. Le récipient est un calorimètre dont on peut né-
gliger l’absorption de chaleur. Avant d’enclencher le chauffage, la température 
de l’eau est T0 et son entropie est S0. Une évolution linéaire de la température 
donnée par T (t) = T0 + A t est observée. Déduire la variation d’entropie ∆S 
durant ce processus, qu'on supposera réversible.

2.7 Horloge suisse

Une entreprise horlogère suisses mentionne dans son catalogue la 
puissance mécanique PW dissipée par une de ses horloges (fig. ??). Le travail 
effectué sur l’horloge est dû à des fluctuations de température ∆T autour de la 
température ambiante moyenne T . Il permet à l’horloge de fonctionner durant 
un intervalle de temps ∆t. On considère que la pression atmosphérique p ext est
égale à la pression du gaz p, i.e. p ext = p. La pression p et le volume V du gaz 
sont liés par la loi des gaz parfait p V = NR T où R est la constante des gaz 
parfait. En considérant que le gaz à l’intérieur la capsule est toujours à l’équi-
libre avec l’air à l’extérieur de la capsule (pression et température intérieures 
et extérieures égales). D’après les données de l’entreprise horlogère, estimer le 
volume V de la capsule de gaz utilisée pour faire fonctionner cette horloge.

Application numérique

PW = 0.25 · 10-6 W, T = 25◦C, ∆T = 1◦C, p ext = 105 Pa et ∆t = 1 jour.
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Fig. 2.1 Un horloge reçoit de l’énergie d’une capsule de gaz (zone grise). Le gaz se détend
et se comprime sous l’effet des fluctuations de la température ambiante.

2.8 Détentes réversible et irréversible d’un gaz

Une mole de gaz subit une détente au moyen de deux processus
différents. Le gaz satisfait l’équation d’état p V = NRT où R est une constante,
N est le nombre de moles, p la pression, T la température et V le volume du
gaz. Les températures initiales et finales sont T0. Les parois du récipient sont
diathermes. Toutefois, si un processus a lieu extrêmement rapidement, les parois
peuvent être considérées comme adiabatiques. La pression initiale du gaz est
p1, la pression finale est p2. Exprimer le travail effectué sur le gaz en termes de
p1, p2 et T0 pour les processus suivants :

1) un processus isotherme réversible,

2) une variation de volume extrêmement rapide durant laquelle la pression
exercée sur le gaz vaut p2, suivie par un processus isochore durant lequel
la température atteint à nouveau la température d’équilibre T0.

2.9 Processus adiabatique réversible sur un gaz

Un gaz parfait à pression p et volume V est tel que son énergie interne
est donnée par U = c p V , où c est une constante sans dimension. Déterminer le
pression p (V ) pour une compression ou une expansion adiabatique réversible.

2.10 Compression thermique d’un ressort

On considère un piston de masse négligeable coulissant sans frotte-
ment dans un cylindre d’aire A et attaché à un ressort dont la constante de
rappel est k (fig. ??). Lorsque le cylindre est vide, le piston se trouve en position
x0. On le remplit d’un gaz parfait qui satisfait la loi p V = NRT . L’énergie
interne du gaz est donnée par U = cNRT où c > 0 est une constante et R > 0
également. Après remplissage, il se trouve alors à l’équilibre en position initiale
xi. On chauffe le cylindre et on constate qu’il se trouve alors à l’équilibre en
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position finale xf . On suppose que ce processus est réversible et que le système
se trouve dans une enceinte à vide, c’est-à-dire que la pression dans l’enceinte
est nulle. La masse du piston n’est pas prise en considération ici.

Fig. 2.2 Un piston enfermant un gaz passe de la position xi à la position xf , lorsque le
gaz contenu dans le cylindre est chauffé. Le piston est retenu par un ressort de constante
élastique k. La position au repos du ressort est en x0.

1) Déterminer le volume Va, la pression pa et la température Ta du gaz en
position d’équilibre a en termes des paramètres k, A, x0 et xa.

2) Montrer que la dérivée de la pression p par rapport au volume V est de la
forme,

dp

dV
=

k

A2

3) Déterminer le travail −Wif effectué par le gaz sur le ressort lorsque le
piston se déplace de xi à xf en termes des paramètres k, xi et xf .

4) Déterminer la variation d’énergie interne ∆Uif du gaz lorsque le piston se
déplace de xi à xf en termes des paramètres k, c, x0, xi et xf .




